电流自动调节OK

This commit is contained in:
sunbeam0529 2025-07-04 17:08:52 +08:00
parent 26b37c972e
commit 1b4971d3f3

View File

@ -1,17 +1,15 @@
#include "STC8.H" #include "STC8.H"
#include <intrins.h> #include <intrins.h>
typedef enum typedef enum
{ {
OUT_INIT=0, OUT_INIT = 0,
OUT_RUNNING, OUT_RUNNING,
OUT_AUTOSTOP, OUT_AUTOSTOP,
OUT_ERR, OUT_ERR,
OUTSTATE_NUM, OUTSTATE_NUM,
}OUTSTATE_t; } OUTSTATE_t;
/*************** 宏定义 **************/ /*************** 宏定义 **************/
#define FOSC 11059200UL // MCU工作频率为11.0592MHz #define FOSC 11059200UL // MCU工作频率为11.0592MHz
@ -19,7 +17,8 @@ typedef enum
#define IAP_ADDRESS 0x0000 #define IAP_ADDRESS 0x0000
#define LED_OFF P00 = 1 #define LED_ON P16 = 1
#define LED_OFF P16 = 0
#define WT_30M 0x80 #define WT_30M 0x80
#define WT_24M 0x81 #define WT_24M 0x81
@ -30,45 +29,45 @@ typedef enum
#define WT_2M 0x86 #define WT_2M 0x86
#define WT_1M 0x87 #define WT_1M 0x87
#define ISP_STANDBY() ISP_CMD = 0 /* ISP空闲命令禁止*/ #define IAP_STANDBY() IAP_CMD = 0 /* ISP空闲命令禁止*/
#define ISP_READ() ISP_CMD = 1 /* ISP读出命令 */ #define IAP_READ() IAP_CMD = 1 /* ISP读出命令 */
#define ISP_WRITE() ISP_CMD = 2 /* ISP写入命令 */ #define IAP_WRITE() IAP_CMD = 2 /* ISP写入命令 */
#define ISP_ERASE() ISP_CMD = 3 /* ISP擦除命令 */ #define IAP_ERASE() IAP_CMD = 3 /* ISP擦除命令 */
// sfr ISP_TRIG = 0xC6; // sfr IAP_TRIG = 0xC6;
#define ISP_TRIG() ISP_TRIG = 0x5A, ISP_TRIG = 0xA5 /* ISP触发命令 */ #define IAP_TRIG() IAP_TRIG = 0x5A, IAP_TRIG = 0xA5 /* ISP触发命令 */
// 7 6 5 4 3 2 1 0 Reset Value // 7 6 5 4 3 2 1 0 Reset Value
// sfr ISP_CONTR = 0xC7; ISPEN SWBS SWRST CFAIL - WT2 WT1 WT0 0000,x000 //ISP Control Register // sfr IAP_CONTR = 0xC7; ISPEN SWBS SWRST CFAIL - WT2 WT1 WT0 0000,x000 //ISP Control Register
#define ISP_EN (1 << 7) #define IAP_EN (1 << 7)
#define ISP_SWBS (1 << 6) #define IAP_SWBS (1 << 6)
#define ISP_SWRST (1 << 5) #define IAP_SWRST (1 << 5)
#define ISP_CMD_FAIL (1 << 4) #define IAP_CMD_FAIL (1 << 4)
#define ISP_WAIT_1MHZ 7 #define IAP_WAIT_1MHZ 7
#define ISP_WAIT_2MHZ 6 #define IAP_WAIT_2MHZ 6
#define ISP_WAIT_3MHZ 5 #define IAP_WAIT_3MHZ 5
#define ISP_WAIT_6MHZ 4 #define IAP_WAIT_6MHZ 4
#define ISP_WAIT_12MHZ 3 #define IAP_WAIT_12MHZ 3
#define ISP_WAIT_20MHZ 2 #define IAP_WAIT_20MHZ 2
#define ISP_WAIT_24MHZ 1 #define IAP_WAIT_24MHZ 1
#define ISP_WAIT_30MHZ 0 #define IAP_WAIT_30MHZ 0
#if (FOSC >= 24000000L) #if (FOSC >= 24000000L)
#define ISP_WAIT_FREQUENCY ISP_WAIT_30MHZ #define IAP_WAIT_FREQUENCY IAP_WAIT_30MHZ
#elif (FOSC >= 20000000L) #elif (FOSC >= 20000000L)
#define ISP_WAIT_FREQUENCY ISP_WAIT_24MHZ #define IAP_WAIT_FREQUENCY IAP_WAIT_24MHZ
#elif (FOSC >= 12000000L) #elif (FOSC >= 12000000L)
#define ISP_WAIT_FREQUENCY ISP_WAIT_20MHZ #define IAP_WAIT_FREQUENCY IAP_WAIT_20MHZ
#elif (FOSC >= 6000000L) #elif (FOSC >= 6000000L)
#define ISP_WAIT_FREQUENCY ISP_WAIT_12MHZ #define IAP_WAIT_FREQUENCY IAP_WAIT_12MHZ
#elif (FOSC >= 3000000L) #elif (FOSC >= 3000000L)
#define ISP_WAIT_FREQUENCY ISP_WAIT_6MHZ #define IAP_WAIT_FREQUENCY IAP_WAIT_6MHZ
#elif (FOSC >= 2000000L) #elif (FOSC >= 2000000L)
#define ISP_WAIT_FREQUENCY ISP_WAIT_3MHZ #define IAP_WAIT_FREQUENCY IAP_WAIT_3MHZ
#elif (FOSC >= 1000000L) #elif (FOSC >= 1000000L)
#define ISP_WAIT_FREQUENCY ISP_WAIT_2MHZ #define IAP_WAIT_FREQUENCY IAP_WAIT_2MHZ
#else #else
#define ISP_WAIT_FREQUENCY ISP_WAIT_1MHZ #define IAP_WAIT_FREQUENCY IAP_WAIT_1MHZ
#endif #endif
/***************函数声明**************/ /***************函数声明**************/
@ -91,7 +90,7 @@ void Parameter_Save(void);
unsigned int Get_ADC12bitResult(unsigned char channel); // channel = 0~14 unsigned int Get_ADC12bitResult(unsigned char channel); // channel = 0~14
unsigned int ADC_Average(unsigned int *buff, unsigned int num, unsigned int threshold); unsigned int ADC_Average(unsigned int *buff, unsigned int num, unsigned int threshold);
//new // new
void OutPutCtrl(void); void OutPutCtrl(void);
/***************变量定义**************/ /***************变量定义**************/
@ -176,7 +175,6 @@ unsigned char xdata Shut_Min = 0;
unsigned char xdata Shut_Sec = 0; unsigned char xdata Shut_Sec = 0;
unsigned int xdata Shut_MS = 0; unsigned int xdata Shut_MS = 0;
int OffsetVoltage = 0; // 补偿电压 int OffsetVoltage = 0; // 补偿电压
float xdata IA; // 实际输出电流 float xdata IA; // 实际输出电流
@ -185,9 +183,13 @@ float xdata AdjVoltage = 0; // 调节电压
float xdata CompensationValue = 0; // 补偿系数 float xdata CompensationValue = 0; // 补偿系数
float xdata OutGain = 0; // 输出增益调节 float xdata OutGain = 0; // 输出增益调节
//new // new
OUTSTATE_t xdata OutPutState; OUTSTATE_t xdata OutPutState;
unsigned int xdata InitTimeCnt; unsigned int xdata InitTimeCnt;
unsigned int xdata TimeBaseCnt, TimeBaseCntLast;
bit ledState;
unsigned int xdata TargetCurrent;
unsigned int xdata OutputVol;
/*************** 主函数 **************/ /*************** 主函数 **************/
void main() void main()
{ {
@ -209,54 +211,37 @@ void main()
Delay10ms(); Delay10ms();
EEPROM_read_n(IAP_ADDRESS, TableRead, 18); // 从EEPROM读取数据 EEPROM_read_n(IAP_ADDRESS, TableRead, 18); // 从EEPROM读取数据
if (TableRead[0] == 0x55 && TableRead[1] == 0xaa)
{
TargetCurrent = (TableRead[2] << 8) + TableRead[3];
}
else
{
TargetCurrent = 1000; // 10mA
Save_Flag = 1;
}
RunTime = TableRead[0] * 256UL + TableRead[1]; // 读EEPROM数据--运行时间 // RunTime = TableRead[0] * 256UL + TableRead[1]; // 读EEPROM数据--运行时间
SetVoltage = TableRead[2] * 256UL + TableRead[3]; // 读EEPROM数据--设置电压 // SetVoltage = TableRead[2] * 256UL + TableRead[3]; // 读EEPROM数据--设置电压
SetCorroV = TableRead[4] * 256UL + TableRead[5]; // 读EEPROM数据--腐蚀电压 // SetCorroV = TableRead[4] * 256UL + TableRead[5]; // 读EEPROM数据--腐蚀电压
OutSet = TableRead[6] * 256UL + TableRead[7]; // 读EEPROM数据--输出设置 // OutSet = TableRead[6] * 256UL + TableRead[7]; // 读EEPROM数据--输出设置
DisSet = TableRead[8] * 256UL + TableRead[9]; // 读EEPROM数据--显示设置 // DisSet = TableRead[8] * 256UL + TableRead[9]; // 读EEPROM数据--显示设置
CurrentError = (float)(TableRead[10] * 256UL + TableRead[11]) / 100; // 读EEPROM数据--电流误差 // CurrentError = (float)(TableRead[10] * 256UL + TableRead[11]) / 100; // 读EEPROM数据--电流误差
AdjVoltage = (float)(TableRead[12] * 256UL + TableRead[13]); // 读EEPROM数据--调节电压 // AdjVoltage = (float)(TableRead[12] * 256UL + TableRead[13]); // 读EEPROM数据--调节电压
AcqError = (float)(TableRead[14] * 256UL + TableRead[15]) / 10; // 读EEPROM数据--采集误差 // AcqError = (float)(TableRead[14] * 256UL + TableRead[15]) / 10; // 读EEPROM数据--采集误差
Limitvoltage = TableRead[16] * 256UL + TableRead[17]; // 读EEPROM数据--极限电压(新增) // Limitvoltage = TableRead[16] * 256UL + TableRead[17]; // 读EEPROM数据--极限电压(新增)
// 第一次运行程序EEPROM数据全是FFFF进行参数初始化处理 // 第一次运行程序EEPROM数据全是FFFF进行参数初始化处理
if (RunTime == 0xFFFF)
{ RunTime = 0;
RunTime = 0; SetVoltage = 2000;
} SetCorroV = 920;
if (SetVoltage == 0xFFFF) Limitvoltage = 1600;
{ AdjVoltage = 3;
SetVoltage = 2000; CurrentError = 1000;
} AcqError = 100;
if (SetCorroV == 0xFFFF) OutSet = 10000;
{ DisSet = 16146;
SetCorroV = 920;
}
if (Limitvoltage == 0xFFFF)
{
Limitvoltage = 1600;
}
if (AdjVoltage == 0xFFFF)
{
AdjVoltage = 3;
}
if (CurrentError == (0xFFFF) / 100.0)
{
CurrentError = 1000;
}
if (AcqError == (0xFFFF) / 10.0)
{
AcqError = 100;
}
if (OutSet == 0xFFFF)
{
OutSet = 10000;
}
if (DisSet == 0xFFFF)
{
DisSet = 16146;
}
OutGain = (float)OutSet / 10000; OutGain = (float)OutSet / 10000;
@ -265,12 +250,36 @@ void main()
AcqInitCnt = 0; AcqInitCnt = 0;
InitTimeCnt = 0; InitTimeCnt = 0;
TimeBaseCnt = 0;
TimeBaseCntLast = 0;
OutPutState = OUT_INIT;
while (1) while (1)
{ {
DataParsing(); // 串口数据解析 if (TimeBaseCnt > TimeBaseCntLast)
UartSendData(); // 串口定时发送数据 {
Read_ADC(); // AD采集数据处理 TimeBaseCntLast++;
Parameter_Save(); DataParsing(); // 串口数据解析
UartSendData(); // 串口定时发送数据
Read_ADC(); // AD采集数据处理
Parameter_Save();
if (TimeBaseCntLast % 10 == 0)
{
OutPutCtrl();
}
if (TimeBaseCntLast % 1000 == 0)
{
ledState = !ledState;
P16 = ledState;
}
if (TimeBaseCnt >= 10000)
{
TimeBaseCnt = 0;
TimeBaseCntLast = 0;
}
}
if (AcqInitFlag == 0) // 上电采集初始电压 if (AcqInitFlag == 0) // 上电采集初始电压
{ {
if (AcqInitCnt > 1000) // 上电3秒内采集初始电压时间可修改 if (AcqInitCnt > 1000) // 上电3秒内采集初始电压时间可修改
@ -283,26 +292,42 @@ void main()
} }
} }
//AutoAction(); // 运行自动程序 // AutoAction(); // 运行自动程序
OutPutCtrl();
} }
} }
void OutPutCtrl(void) void OutPutCtrl(void)
{ {
OutCurrent = (unsigned int)(IA * 100); // 放大10倍后的电流触摸屏显示用
switch (OutPutState) switch (OutPutState)
{ {
case OUT_INIT: case OUT_INIT:
PWM_TO_DAC(5000,2000); PWM_TO_DAC(5000, 1000);
InitTimeCnt++; InitTimeCnt++;
if (InitTimeCnt > 1000) if (InitTimeCnt > 100)
{ {
InitTimeCnt = 0; InitTimeCnt = 0;
OutPutState = OUT_RUNNING; OutPutState = OUT_RUNNING;
OutputVol = 1000;
} }
break; break;
case OUT_RUNNING: case OUT_RUNNING:
if (OutCurrent > TargetCurrent + 20)
{
if (OutputVol > 100)
{
OutputVol--;
}
}
else if (OutCurrent < TargetCurrent - 20)
{
if (OutputVol < 5000)
{
OutputVol++;
}
}
PWM_TO_DAC(5000, OutputVol);
break; break;
case OUT_AUTOSTOP: case OUT_AUTOSTOP:
break; break;
@ -1146,11 +1171,11 @@ void Delay10ms() //@11.0592MHz
*/ */
void DisableEEPROM(void) void DisableEEPROM(void)
{ {
ISP_CONTR = 0; // 关闭ISP功能 IAP_CONTR = 0; // 关闭ISP功能
ISP_CMD = 0; // 清除命令寄存器 IAP_CMD = 0; // 清除命令寄存器
ISP_TRIG = 0; // 清除触发寄存器 IAP_TRIG = 0; // 清除触发寄存器
ISP_ADDRH = 0x80; // 将地址设置到非ISP区域 IAP_ADDRH = 0x80; // 将地址设置到非ISP区域
ISP_ADDRL = 0x00; IAP_ADDRL = 0x00;
} }
/*======================================================================== /*========================================================================
// 函数: void EEPROM_read_n(unsigned int EE_address,unsigned char *DataAddress,unsigned int number) // 函数: void EEPROM_read_n(unsigned int EE_address,unsigned char *DataAddress,unsigned int number)
@ -1165,17 +1190,17 @@ void DisableEEPROM(void)
void EEPROM_read_n(unsigned int EE_address, unsigned char *DataAddress, unsigned int number) void EEPROM_read_n(unsigned int EE_address, unsigned char *DataAddress, unsigned int number)
{ {
// EA = 0; //禁止中断 // EA = 0; //禁止中断
ISP_CONTR = (ISP_EN + ISP_WAIT_FREQUENCY); // 设置等待时间允许ISP/ISP操作送一次就够 IAP_CONTR = (IAP_EN + IAP_WAIT_FREQUENCY); // 设置等待时间允许ISP/ISP操作送一次就够
ISP_READ(); // 送字节读命令,命令不需改变时,不需重新送命令 IAP_READ(); // 送字节读命令,命令不需改变时,不需重新送命令
do do
{ {
ISP_ADDRH = EE_address / 256; // 送地址高字节(地址需要改变时才需重新送地址) IAP_ADDRH = EE_address / 256; // 送地址高字节(地址需要改变时才需重新送地址)
ISP_ADDRL = EE_address % 256; // 送地址低字节 IAP_ADDRL = EE_address % 256; // 送地址低字节
ISP_TRIG(); // 先送5AH再送A5H到ISP/ISP触发寄存器每次都需要如此 IAP_TRIG(); // 先送5AH再送A5H到ISP/ISP触发寄存器每次都需要如此
// 送完A5H后ISP/ISP命令立即被触发启动 // 送完A5H后ISP/ISP命令立即被触发启动
// CPU等待ISP完成后才会继续执行程序。 // CPU等待ISP完成后才会继续执行程序。
_nop_(); _nop_();
*DataAddress = ISP_DATA; // 读出的数据送往 *DataAddress = IAP_DATA; // 读出的数据送往
EE_address++; EE_address++;
DataAddress++; DataAddress++;
} while (--number); } while (--number);
@ -1198,11 +1223,11 @@ void EEPROM_SectorErase(unsigned int EE_address)
// EA = 0; //禁止中断 // EA = 0; //禁止中断
// 只有扇区擦除没有字节擦除512字节/扇区。 // 只有扇区擦除没有字节擦除512字节/扇区。
// 扇区中任意一个字节地址都是扇区地址。 // 扇区中任意一个字节地址都是扇区地址。
ISP_ADDRH = EE_address / 256; // 送扇区地址高字节(地址需要改变时才需重新送地址) IAP_ADDRH = EE_address / 256; // 送扇区地址高字节(地址需要改变时才需重新送地址)
ISP_ADDRL = EE_address % 256; // 送扇区地址低字节 IAP_ADDRL = EE_address % 256; // 送扇区地址低字节
ISP_CONTR = (ISP_EN + ISP_WAIT_FREQUENCY); // 设置等待时间允许ISP/ISP操作送一次就够 IAP_CONTR = (IAP_EN + IAP_WAIT_FREQUENCY); // 设置等待时间允许ISP/ISP操作送一次就够
ISP_ERASE(); // 送扇区擦除命令,命令不需改变时,不需重新送命令 IAP_ERASE(); // 送扇区擦除命令,命令不需改变时,不需重新送命令
ISP_TRIG(); IAP_TRIG();
_nop_(); _nop_();
DisableEEPROM(); DisableEEPROM();
// EA = 1; //重新允许中断 // EA = 1; //重新允许中断
@ -1221,14 +1246,14 @@ void EEPROM_write_n(unsigned int EE_address, unsigned char *DataAddress, unsigne
{ {
// EA = 0; //禁止中断 // EA = 0; //禁止中断
ISP_CONTR = (ISP_EN + ISP_WAIT_FREQUENCY); // 设置等待时间允许ISP/ISP操作送一次就够 IAP_CONTR = (IAP_EN + IAP_WAIT_FREQUENCY); // 设置等待时间允许ISP/ISP操作送一次就够
ISP_WRITE(); // 送字节写命令,命令不需改变时,不需重新送命令 IAP_WRITE(); // 送字节写命令,命令不需改变时,不需重新送命令
do do
{ {
ISP_ADDRH = EE_address / 256; // 送地址高字节(地址需要改变时才需重新送地址) IAP_ADDRH = EE_address / 256; // 送地址高字节(地址需要改变时才需重新送地址)
ISP_ADDRL = EE_address % 256; // 送地址低字节 IAP_ADDRL = EE_address % 256; // 送地址低字节
ISP_DATA = *DataAddress; // 送数据到ISP_DATA只有数据改变时才需重新送 IAP_DATA = *DataAddress; // 送数据到IAP_DATA只有数据改变时才需重新送
ISP_TRIG(); IAP_TRIG();
_nop_(); _nop_();
EE_address++; EE_address++;
DataAddress++; DataAddress++;
@ -1250,8 +1275,8 @@ void EEPROM_write_n(unsigned int EE_address, unsigned char *DataAddress, unsigne
*/ */
void ADC_Init() void ADC_Init()
{ {
P1M0 = 0x00; // 设置P1.4、P1.5、P1.6、P1.7为ADC口 P1M0 = 0x40; // 设置P1.4、P1.5、P1.6、P1.7为ADC口
P1M1 = 0xF0; P1M1 = 0xA0;
ADCCFG |= 0x2F; // 设置ADC时钟为系统时钟/2/16/Speed,设置结果右对齐 ADCCFG |= 0x2F; // 设置ADC时钟为系统时钟/2/16/Speed,设置结果右对齐
ADC_CONTR = 0x80; // 使能ADC模块 ADC_CONTR = 0x80; // 使能ADC模块
@ -1370,8 +1395,8 @@ void Read_ADC()
OutVoltage = ADC0_Value * 4.03 * 2498UL / DisSet; // 输出电压(负载两端电压),根据实际情况修改 OutVoltage = ADC0_Value * 4.03 * 2498UL / DisSet; // 输出电压(负载两端电压),根据实际情况修改
// AcqVolatage = ADC1_Value * 2498UL / DisSet * 1.0 - AcqError; // 采集电压 // AcqVolatage = ADC1_Value * 2498UL / DisSet * 1.0 - AcqError; // 采集电压
IA = ((float)ADC2_Value * 2498UL / DisSet / 10.08) / 2.0 - CurrentError; // 实际输出电流,根据实际情况修改 // IA = ((float)ADC2_Value * 2498UL / DisSet / 10.08) / 2.0 - CurrentError; // 实际输出电流,根据实际情况修改
IA = ((float)ADC2_Value * 2498UL / DisSet / 10.00) / 2.0;
AD_Refresh = 1; AD_Refresh = 1;
} }
} }
@ -1420,14 +1445,9 @@ void UartIsr() interrupt 4 using 1
if (RI) if (RI)
{ {
RI = 0; RI = 0;
// Rx_Busy = 1;
aRxBufferTemp = SBUF; aRxBufferTemp = SBUF;
// //上位机有数据发送,停止轮发
// SendEN = 0;
// UartCnt= 0;
if (RX_5A_OK) if (RX_5A_OK)
{ {
if (RX_A5_OK) if (RX_A5_OK)
@ -1486,91 +1506,13 @@ void DataParsing(void)
if (Uart1Ready_R == 1) // 数据接收完成,处理接收到的数据 if (Uart1Ready_R == 1) // 数据接收完成,处理接收到的数据
{ {
// 按键返回 // 按键返回
if ((Rxbuff[0] == 0x06) && (Rxbuff[1] == 0x83) && (Rxbuff[2] == 0x00) && (Rxbuff[3] == 0x20) && (Rxbuff[4] == 0x01) && (Rxbuff[5] == 0x00) && (Rxbuff[6] == 0x00)) if (Rxbuff[0] == 0x02)
{ {
// 参数复位 // 参数复位
RunTime = 0; // 运行时间 TargetCurrent = Rxbuff[1] << 8 + Rxbuff[2];
Save_Cnt = 0;
SetVoltage = 2000; // 设置电压
SetCorroV = 650; // 腐蚀电压
// SetCorroV = 920; //腐蚀电压 //万博
AdjVoltage = 3.0; // 调节电压
CurrentError = 0; // 电流误差
AcqError = 0; // 采集误差
OutSet = 10000;
DisSet = 16146; // 显示设置
OutGain = 1.0000; // 输出设置
Limitvoltage = 1600; // 极限电压
// 参数掉电保存(直接调用函数) // 参数掉电保存(直接调用函数)
Save_Flag = 1; Save_Flag = 1;
Parameter_Save(); // Parameter_Save();
}
// 参数返回
if ((Rxbuff[0] == 0x06) && (Rxbuff[1] == 0x83) && (Rxbuff[2] == 0x00))
{
if ((Rxbuff[3] == 0x04) && (Rxbuff[4] == 0x01))
{
SetVoltage = Rxbuff[5] * 256 + Rxbuff[6]; // 设置电压
CalibrationVoltage = SetVoltage;
// 参数掉电保存(直接调用函数)
Save_Flag = 1;
Parameter_Save();
}
if ((Rxbuff[3] == 0x05) && (Rxbuff[4] == 0x01))
{
SetCorroV = Rxbuff[5] * 256 + Rxbuff[6]; // 腐蚀电压
// 参数掉电保存(直接调用函数)
Save_Flag = 1;
Parameter_Save();
}
if ((Rxbuff[3] == 0x0E) && (Rxbuff[4] == 0x01))
{
OutSet = Rxbuff[5] * 256 + Rxbuff[6]; // 输出设置
OutGain = (float)OutSet / 10000;
// 参数掉电保存(直接调用函数)
Save_Flag = 1;
Parameter_Save();
}
if ((Rxbuff[3] == 0x0F) && (Rxbuff[4] == 0x01))
{
DisSet = Rxbuff[5] * 256 + Rxbuff[6]; // 显示设置
// 参数掉电保存(直接调用函数)
Save_Flag = 1;
Parameter_Save();
}
if ((Rxbuff[3] == 0x10) && (Rxbuff[4] == 0x01))
{
CurrentError = (float)(Rxbuff[5] * 256 + Rxbuff[6]) / 100; // 电流误差
// 参数掉电保存(直接调用函数)
Save_Flag = 1;
Parameter_Save();
}
if ((Rxbuff[3] == 0x11) && (Rxbuff[4] == 0x01))
{
AdjVoltage = (float)(Rxbuff[5] * 256 + Rxbuff[6]); // 调节电压
// 参数掉电保存(直接调用函数)
Save_Flag = 1;
Parameter_Save();
}
if ((Rxbuff[3] == 0x0D) && (Rxbuff[4] == 0x01))
{
AcqError = (float)(Rxbuff[5] * 256 + Rxbuff[6]) / 10; // 采集误差
// 参数掉电保存(直接调用函数)
Save_Flag = 1;
Parameter_Save();
}
if ((Rxbuff[3] == 0x12) && (Rxbuff[4] == 0x01))
{
Limitvoltage = Rxbuff[5] * 256 + Rxbuff[6]; // 新增--极限电压
// 参数掉电保存(直接调用函数)
Save_Flag = 1;
Parameter_Save();
}
} }
} }
Uart1Ready_R = 0; Uart1Ready_R = 0;
@ -1595,19 +1537,22 @@ void UartSendData(void)
busy = 1; busy = 1;
if (!SendInit) if (!SendInit)
{ {
SendBuffer[0] = 0x5A; SendBuffer[0] = 0x55;
SendBuffer[1] = 0xA5; SendBuffer[1] = 0xAA;
SendBuffer[2] = 0X2F; // 长度
SendBuffer[3] = 0X82; // 命令 SendBuffer[2] = RunTime >> 8; // 运行时间H
SendBuffer[4] = 0X00; // 首地址H SendBuffer[3] = RunTime; // 运行时间L
SendBuffer[5] = 0X00; // 首地址L SendBuffer[4] = InVoltage >> 8; // 输入电压H
// 第一页参数显示 SendBuffer[5] = InVoltage; // 输入电压L
SendBuffer[6] = RunTime >> 8; // 运行时间H SendBuffer[6] = OutVoltage >> 8; // 输出电压H
SendBuffer[7] = RunTime; // 运行时间L SendBuffer[7] = OutVoltage; // 输出电压L
SendBuffer[8] = InVoltage >> 8; // 输入电压H SendBuffer[8] = OutCurrent >> 8; // 输出电流H
SendBuffer[9] = InVoltage; // 输入电压L SendBuffer[9] = OutCurrent;
SendBuffer[10] = OutVoltage >> 8; // 输出电压H
SendBuffer[11] = OutVoltage; // 输出电压L SendBuffer[10] = TargetCurrent >> 8;
SendBuffer[11] = TargetCurrent;
SendBuffer[12] = 0X5A;
/*
SendBuffer[12] = OffsetVoltage >> 8; // 补偿电压H SendBuffer[12] = OffsetVoltage >> 8; // 补偿电压H
SendBuffer[13] = OffsetVoltage; // 补偿电压L SendBuffer[13] = OffsetVoltage; // 补偿电压L
SendBuffer[14] = SetVoltage >> 8; // 设置电压H SendBuffer[14] = SetVoltage >> 8; // 设置电压H
@ -1645,14 +1590,12 @@ void UartSendData(void)
SendBuffer[43] = Limitvoltage; // 新增-极限电压 SendBuffer[43] = Limitvoltage; // 新增-极限电压
SendBuffer[44] = Shut_Min >> 8; // 新增-重启时间 SendBuffer[44] = Shut_Min >> 8; // 新增-重启时间
SendBuffer[45] = Shut_Min; // 新增-重启时间 SendBuffer[45] = Shut_Min; // 新增-重启时间
SendBuffer[46] = OutCurrent >> 8; // 输出电流H */
SendBuffer[47] = OutCurrent; // 输出电流L
SendInit = 1; SendInit = 1;
SentCnt = 0; SentCnt = 0;
} }
SBUF = SendBuffer[SentCnt++]; SBUF = SendBuffer[SentCnt++];
if (SentCnt > 47) if (SentCnt > 12)
{ {
SendEN = 0; SendEN = 0;
} }
@ -1692,7 +1635,7 @@ void TM0_Isr() interrupt 1 using 1
ADC_Cnt++; ADC_Cnt++;
Cnt++; Cnt++;
AcqInitCnt++; AcqInitCnt++;
TimeBaseCnt++;
/*** 新增2019-11-14 ***/ /*** 新增2019-11-14 ***/
if (PWM_ON_EN) if (PWM_ON_EN)
{ {
@ -1812,29 +1755,13 @@ void Parameter_Save(void)
{ {
// 参数掉电保存 // 参数掉电保存
EEPROM_SectorErase(IAP_ADDRESS); EEPROM_SectorErase(IAP_ADDRESS);
TableWrite[0] = 0x55;
TableWrite[1] = 0xAA;
TableWrite[0] = RunTime >> 8; // 运行时间H TableWrite[2] = TargetCurrent >> 8; // 运行时间H
TableWrite[1] = RunTime; // 运行时间L TableWrite[3] = TargetCurrent & 0XFF; // 运行时间L
TableWrite[2] = SetVoltage >> 8; // 设置电压H
TableWrite[3] = SetVoltage; // 设置电压L
TableWrite[4] = SetCorroV >> 8; // 腐蚀电压H
TableWrite[5] = SetCorroV; // 腐蚀电压L
TableWrite[6] = OutSet >> 8; // 输出设置H EEPROM_write_n(IAP_ADDRESS, TableWrite, 4);
TableWrite[7] = OutSet; // 输出设置L
TableWrite[8] = DisSet >> 8; // 显示设置H
TableWrite[9] = DisSet; // 显示设置L
TableWrite[10] = (unsigned int)(CurrentError * 100) >> 8; // 电流误差H
TableWrite[11] = (unsigned int)(CurrentError * 100); // 电流误差L
TableWrite[12] = (unsigned int)AdjVoltage >> 8; // 调节电压H
TableWrite[13] = (unsigned int)AdjVoltage; // 调节电压L
TableWrite[14] = (unsigned int)AcqError >> 8; // 采集误差H
TableWrite[15] = (unsigned int)AcqError; // 采集误差L
TableWrite[16] = Limitvoltage >> 8; // 新增-极限电压
TableWrite[17] = Limitvoltage; // 新增-极限电压
EEPROM_write_n(IAP_ADDRESS, TableWrite, 18);
Save_Flag = 0; Save_Flag = 0;
} }
} }